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by considering the power functions and average sample sizes of linear
versions of these tests. Also, the Pitman asymptotic efficiencies

of the proposed tests are compared to those of fixed-sample-size tests
and sequential probability ratio tests, indicating that the proposed
tests are intermediate to these two alternatives. However, the
complexity and other properties of the proposed tests are comparable

to those of the fixed-sample-size test, making their use desirable for
many applications.A Nonparametric versions of these tests, based on

the sign-test statistic, are also proposed for the location-testing
problem, and these are compared to the corresponding fixed~sample-size
sign test with essentially the same conclusions being drawn as in the
case of the linear tests. Finally, the efficiency of a k-stage version
of one of the proposed tests is considered with the conclusion that the
behavior of the two-stage version (whether it be good or bad) is
amplified by adding stages up to a point beyond which the effects of
adding stages diminishes.
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1. Introduction

In this paper we consider the problem of testing an hypothesis HO
versus an alternative Hl for situations in which a large number of tests
are to be performed and in which H1 occurs only rarely. Such situations
arise in many applications. For example, in search radar, the radar
examines a large number of resolution cells on each scan of a search area,
but it is expected that targets will be present in only a small fraction
of the resolution cells, Similar situations arise in applications such
as medical testing and quality control.

The tests we consider here are described as follows: For each test,
a sample is taken and a standard procedure is applied to decide whether

or not Ho can be accepted. 1If HO is accepted, then the test ends. If H

0

is not accepted, then a second sample is taken from the same population

and a second test 1is performed to double-check the result. Thus, Ho is

rejected only if it is rejected on the basis of both samples. The
motivation for this type of testing is that, for small probability of Type
1 error on the first check, the average sample size under Ho

nearly that of the first sample, whereas the overall performance should be

will be very

superior to a test using only the first sample. The trade-off, of course,
is that the average sample size under Hl may be larger than that required
for a comparable fixed-sample-size test; however, since H1 is assumed to
occur only rarely, the overall average sample size should be smaller than
that of a comparable fixed-sample-size test,

In this paper, we consider two such double-check procedures — Procedure
1 in which the double-check is performed only on the second sample, and
Procedure 2 in which the double-check is performed on the first and second

samples combined. To investigate the properties of these tests, we consider
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primarily the specific problem of location testing with i.i.d. normal
errors. We compare the power functions and average sample sizes of these
procedures to those of fixed-sample-size tests of the same significance
level and with various sample sizes. We also consider the Pitman
asymptotic efficiency of these two procedures relative to both fixed-sample-
size tests and sequential tests. Nonparametric versions of the new
procedures are also proposed and an analysis of their behavior is included.

Finally, a generalization is considered in which Ho is rejected only after

being rejected on k samples where k is a positive integer.
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2. General Description and Error-Probability Performance

Suppose we have two samples Xi =0 +6ys i= 1,2,...,n1 and xi =9 +65

i=n,+1,...,n, vhere ¢,,...,6_ 1is an i.i.d. sequence of 7(0,1) errors and
1 1 n

where 8 2 0. Consider the two tests for the hypothesis HO:G =0 versus the

alternative Hl B8 >0,
n
1 n
1; if 121 x, 2 T and 1-n2+1 Xy = T,
‘PDC]_@) = 1 1
0; otherwise
and
| n
. ]
1; if iEI xi 2 T and i§1 xi = 72
Ppe2 ® = )

0; otherwise

where (PDCI(E) [resp. Ppc2 (x)] is the probability with which we accept Hl

given that (xl,...,xn) = (xl,...,xn) = x, and ™1 and T, [resp. "é] are
chosen to give desired probability of Type I error. Note that size o can

be achieved by choosing Ty to yield size og* 2 o on the first check (i.e.,

T = ./nl d’-l(l-a*) where & denotes the unit normal distribution function)

2
threshold is thus given by T, = ,./n-nl tb.l(l-a/a*), and for (2) the second

and then choosing T, O T to give overall size . For (1), the second

threshold is given by 'ré = JH b where b is the solution to the equation
a-a* = F@ (l-a%),b) - &), ®

where F denotes the joint unit normal distribution function with correlstion
coefficient (1+K)_% where K = (n-nl)/nl.

Note that the average sample size under H, of either (1) or (2) is

0
given by (1+a*K)n1, and the average sample size under Hl of either test

is given by (1+B*K)n1, where B* = 1-<P(<P-1(1-a*) -A/;-l- 8). Also, the

...................................................
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power functions (i.e., power versus 8) of Ppcl and Ppcy are easily computed

using standard techniques. The behavior of ?pcl and Ppcy Was compared to

that of the fixed-sample-size test

M
L if T x 2 o (1-a)

i=1

Ppgs &) = %)

0; otherwise
for a variety of choices of the test parameters o, a*, K, and M and for
n = 20, Table 1 contains data for the particular cases o =0.01, n, = 8,

a*=0,5 and 0.2 and M = 10, 15, and 20. These values of n, and a* are used

because they appear to be nearly optimum for Ppc2 with this choice of «
and n, and the behavior exhibited in Table 1 is typical of the general
optimum behavior of ?pel and Ppcpe Note from Table 1 that, for the choice
ax=0,3, ?pcl and Ppc2 have power functions very near those of Prss with
M=15 and 20, respectively. 1In this case, Ppc2 is clearly superior to the
comparable fixed-sample-size test, whereas Pl is not. Alternately, for
the choice a* =0.2, ?ncl has a power function which is greater than that of
the M=15 version of Prss while requiring only 10.4 samples on the average
under H,. Note that the M =10 version of Prss is not comparable to Ppcl
in this case. Note also that, with a*=0.2, Ppe2 still compares favorably
with the M =20 version of Prss in terms of power while rataining the small
average sample size under Ho. It is noteworthy that the average sample
sizes of the double-check tests can in no case exceed n under either

hypothesis,
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3. Asymptotic Efficiencies of the Double-Check Tests

Another comparison of interest is to consider the Pitman asymptotic

efficiencies (as defined, for example, in Noether (1955)) of the tests

(1) and (2) relative to (4). 1In particular it is straightforward to show

that, for fixed o and power B, under H, we have

0
0 -1 -1 2
RELI al CCOEL Jl ¢S 1k )
C,FSS (1+a*K)R2
where, for ®pcl’ the parameter R is the solution to the equation
B = BR-& (1-0))WRR - (L-a/a®)), ©)

and, for ¢DCZ’ R solves
B = OR - & L (1-a*)) - B(b -/TFRR) +F @ L (1-a*) - R,b - VIFER), )

where b and F are as in (3). Similarly, under H1 we have

1 _ {l+a*K) ARE0 (8)

AREn. pss ~ (T+g*K) “REpc,Fss

where B* is as defined above.

h|
DC,FSs

of values of a*, K, o, and B. Note that ¢DCZ is uniformly superior to

Values of ARE for j=0 and 1 are given in Table 2 for a variety

Prss under H0 for the ranges of parameters considered. Furthermore, in

each case, values of a* and K can be chosen so that Ppe2 is nearly as
efficient as Prss under Hl as well. As expected, ?ncl is slightly less
efficient than $pc2? but a* and K can be chosen to yield efficiency under
Hy higher than that of PESS in each case considered. The conditions of

Table 2(¢c) ({.e., o = 10-6, £ =0.95) appear to be most favorable for
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performance under H, of either double-check test. These general conditionms
(1.e., very small o and moderate (1-8)) are the most prevalent for many
testing problems (such as that arising in search radar). The antipodal
conditions (very small (1-B) and moderate «) are less favorable for
performance of the double-check tests. However, these latter conditions
carry the implication that Type II errors are more significant than Type I

errors, and thus that the double-check should be performed only when rejecting

Hl rather than when rejecting HO' This would result in the performance
tabulated in Table 2(c) with the roles of Ho and Hl reversed.

Of course, the optimum multistage test (in terms of average sample
size) is the Wald sequential probability ratio test (SPRT). The asymptotic
efficiency of SPRT relative to Prsg has been considered by Paulson (1947) and
Bechhofer (1960), and by combining their results with (5) and (8) the
asymptotic efficiencies of Ppcl and Ppc2 reiative to the SPRT can be com-
puted straightforwardly. Typical values of the asymptotic efficiency of
®pc2 (with o* = 3~&; and K = 2) relative to the SPRT are given in Table 3.
Note that these values range from approximately 36% to approximately 65%

under HO and from approximately 117 to approximately 367% under H Thus,

1
as is expected, the SPRT is superior in performance to Ppc2 However, the
double-check tests are still preferable to the SPRT for many applications

for several reasons. First, the double-check test is much simplier to
implement since it requires at most two comparisons. Further, the thresholds
of the double-check tests can be set without knowledge of the true value

of 6 under Hl' This is not true of the SPRT. Moreover, the SPRT can be

less efficient than even the fixed-sample-size test if an incorrect value

of © is assumed (Wald (1947)). Finally, the maximum value of the sample

size is finite for the double~-check test, whereas the sample size of the
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SPRT can assume any positive integral value (although this disadvantage of

[ the SPRT can, of course, be eliminated by truncation).
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4. A Nonparametric Version of Pne

Nonparametric versions of (1, and (2) are easily constructed by re-
placing the linear statistics with (HO) distribution-free statistics. For
example, if Xi is replaced by sgn(xi) and randomization is introduced on
the threshold boundaries, then the tests of (1) and (2) become nonparametric
for the hypothesis P(Xi <0) = %. The power functions (for the altermative

P(Xi 2 0) = p > %) of these particular nonparametric versions of (1) and (2)

are compared to that of the fixed-sample-size sign test (i.e., (4) with

Xi replaced by sgn(xi) and with randomization on the threshold boundary) in
Table 4. Note that the Pitman asymptotic relative efficiencies (for location
testing) between these modified tests will be the same as those for the

linear tests within mild regularity conditions on the distribution of the

€ (such as those given in Noether (1955)). It is also noteworthy that,

again within regularity, the asymptotic location-testing efficiencies of
these double-check sign tests relative to the linear test of (4) are
4f2(0)Var(ei) times the value computed from (5) and (8), where £ is the
probability density of €. For the case of normal errors we have
4f2(0)Var(ei) = 2/m, and thus, whenever a value from Table 2 exceeds

n/2 157, the (nonparametric) double-check sign test is more efficient

than the Neyman-Pearson test for normal errors.

.'.'.‘.»'.‘.’»".‘.'.'.'.\
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: 5. k-Stage Tests
’; 'E The above analysis of the double-check tests of (1) and (2) can be
;E - extended straightforwardly to tests which reject HO only after k samples.
S
o :?I For example, consider the following test based on kn1 i.i.d. observations:
. n 2n kn
1 1 1 -1 1/k
1; if min{ ¢ Xis T Kyseess T xi]z./nltb (Q-a™'")
i=1 i=n1+1 i=(k-1)n1+1

Pc @ =
0; otherwise

®

Note that the case k=2 is ®pcl with o* = fx and K=1. In general this
;4 test distributes the Type 1 error uniformly over the k samples. The
_;_ - asymptotic efficiency under HO
g forwardly by

of (9) relative to (4) is given straight-

ARED - a-ot® e ta-g) - e a-p)1? , (10)
kC,FSS (1-q) [(b-l(l_al/k) _ <I>'1(1-s 1/k)]2
‘. and under Hl we have
1/k
1 1- l-g 0
ARE = ARE . (11)
kC,FSS (1-8) (1-a1/k) kC,FSS

Table 5 gives values of the quantities of (10) and (l1) for several values
of o and B and for values of k from 2 to 10. Note that the addition of
stages improves performance under Ho to a point (significantly in some cases),

but that there is a diminishing return and even decreased performance

associated with larger numbers of stages. Also note that, as one might

-- e
t"l

expect, the performance under Hl degrades with increasing k. As a general

: ‘2: rule, it appears that the addition of more stages is helpful in those cases
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) . 10
.'j in which Ppcl performs well. Other k-stage versions of (1) and (2) are
2 [ straightforward to analyze; however the number of variables specifying
such tests prohibits a concise meaningful analysis of their performance.
| =
[
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6. Conclusions

In this paper, we have proposed and analyzed a potentially useful
class of multistage tests. It should be noted that, although we have
considered only the linear test statistic with normal errors and the sign
test statistic, the relative efficiency expressions and numerical data of
Sections 3 and 5 are applicable to much broader classes of parametric
testing problems, test statistics and error distributions, subject to mild
regularity conditions (such as those of Lai (1978), Noether (1955), and/or
Paulson (1947)). As demonstrated by the anal ysis of the above sections,
the proposed tests are intermediate in terms of efficiency to fixed-sample~
size tests and sequential probability ratio tests. Their implementational
complexity and insensitivity to parameter mismatch, however, are comparable
to those of fixed-sample-size tests. Thus, the tests proposed here may be
preferable to both the fixed-sample-size test and the sequential probability

ratio test for many applicationms.
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=8; n=20

a* = 0,2

B,®) | EN[8)

0.01 | 10.40
0.2 | 0.045) 0.060} 0.076! 0.062} 0.076 | 16.57 10.067 | 0.074] 12.70
0.4 | 0.144 [ 0.219f 0.295| 0.220] 0.294| 18.45 |0.244} 0.281} 15.37
0.6 | 0.334] 0.499| 0.639] 0.487} 0.637| 19.46 | 0.537| 0.607| 17.65
0.8 | 0.581| 0.780( 0.895| 0.754| 0.892( 19.86 |[0.802| 0.862( 19.07
1.0} 0.798} 0.939] 0.984] 0.919 0.983| 19.97 {0.943| 0.967| 19.72

MaES . adaaa:

®
Table 1: Power functions of fixed-sample-size linear tests and double-
check linear tests. Bl(-) and 62(-) are for double-check
‘ Procedures 1 and 2, respectively. The errors are normally

distributed and the significance level o equals 0.01.
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Table 2: Asymptotic efficiencies under Ho and Hl of the double-check
tests relative to the fixed-sample-size test. The values in
parenthesis are those under Hl'
(@ a= (1-8) = 0.05
a*s.&/& a*aA/a- a*=1,5‘/a— a*z&/&
K |proc #1| proc #2| proc #1| proc #2| proc #l| proc #2| proc #1l | proc #2
3.0 1.071 1.070 1.117 1.119 1.209 1.235 1.052 1.249
: (.427) -427) (-485) (.486) (-628) (.642) (-799) (:949)
2.0 1.202 1.209 1.257 1.279 1.284 1.390 . 946 1.252
) (-562) (- 566) (-626) (.637) (.732) (.792) (-741) (-980)
L5 1.255 1.283 1.287 1.355 1.232 1.429 .841 1.234
: (-655) (-669) (.704) (.742) (.751) (.871) (.676) (-991)
1.25 1.259 1.316 1.266 1.381 1.163 1.428 +769 1.217
) (-701) (-732) (.734) (.800) (.740) (-909) (-628) (-995)
1.0 1.227 1.335 1.200 1.388 1.050 1.406 679 1.194
’ (-736) (-801) (.743) (.860) (.704) (-943) (:575) (-998)
-6
(b) a= (1-8) = 10
a*=ﬁ a*=1.5/a o* = 3/a
K proc #1 | proc #2 | proc #1| proc #2) proc #1 | proc #2
2.0 1.466 1,467 1.511 1.512 1.597 1.597
: (.490) (.490) (-505) (-505) (-535) (-535)
1.5 1.467 1.467 1.513 1.513 1.599 1.599
: (.588) (.588) (-606) (.606) (-642) (-643)
1.25 1.467 1.467 1.511 1.513 1.578 1.600
(.653) (-653) (-673) (-674) (-704) (.714)
1.0 1.417 1.468 1.405 1.514 1.352 1.601
‘ (.709) (.735) (-704) (.758) (-678) (.803)
0.8 1.174 1.468 1.139 1.513 1.084 1.598
’ (.653) (.816) (-634) (.842) (-604) (.890)
0.5 734 1.439 <712 1.461 678 1.482
: (.490) (.960) (-475) (.975) (-453) (.990)




Table 2 (continued)

(¢) a =10

6

L At udih el e e Seul et d

Pl g niten thd ik atin i

d) «

, 1-B = 0.05
a*:ﬁ a*=1.i/; a*s&/&
K proc #l | proc #2 | proc #1| proc #2| proc #1| proc #2
3.0 1.820 1.821 1.916 1.915 2.102 2.103
’ (-474) (-474) (-500) (.500) (.551) (.551)
2.0 1.821 1.822 1.915 1.918 2.089 2.104
(-629) (.629) (-662) (.663) (.724) (.729)
1.5 1.801 1.819 1.872 1.909 1.967 2.067
) (-743) (.750) (-771) (.786) (-808) (.849)
L 25 1.747 1.805 1.784 1.883 1.806 2.004
’ (.795) | (-.822) | (.810)| (.855)| (.816)| (.906)
_ -6
= 0,05, (1-8) = 10
a*sﬁ q*k= 1.5\/& a*sSJ&
K proc #1 | proc #2 | proc #1]| proc #2| proc #1 |proc #2
1.25 1.050 1.052 1.023 1.075 .725 1.151
y (.597) | (-598) | (.645)| (.678)| (.592) | (.940)
L.0 1.047 1.101 911 1.143 .638 1.175
) (-641) (.673) (.608) (.763) (.533) (.981)
0.8 .912 1.142 .769 1.199 .555 1.165
. (.597) (-748) (.542) (.845) (.474) (.995)
0.5 .606 1.201 .522 1.239 .399 1.123
: (.449) (-890) (.407) (.964) (.355) | (1.000)
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i o
" 1-8 1072 1073 1074 1078
10-2 .654 .580 .490 .356
(.350) | ¢.341) | ¢.343) | (.355)
. 1073 .646 .598 .527 404
(.233) | .238) | 249 | (.270)
104 .629 .611 .555 .438
(171) | ¢.182) | (.196) | (.220)
10-5 612 630 | .593 .489
(.110) | (.126) | (.140) | (.164)

Table 3: Asymptotic efficiencies of Procedure 2 double-check test
relative to the sequential probability ratio test under
Ho and Hl' The values in parentheses are those under H
' The double-check test has o* = 3/5 and K=2.

1.




FSS(p) a*=0.4 a*=0.2

P [M=10{M=15 M=20(8,() |8, |EWP) |8 |8, |EN|P)

0.5 0.01 0.01 0.01 | 0.01 | 0.01 | 12.80 | 0.01 | 0.01 | 10.40
0.6] 0.043] 0.056| 0.072| 0.062| 0.071] 15.50 | 0.064 | 0.070| 12.63
0.7 0.140] 0.204{ 0.287| 0.229| 0.286| 17.89 | 0.240| 0.276 | 15.40
0.8| 0.355| 0.512) 0.678} 0.554}| 0.676 | 19.40 | 0.578( 0.652 | 18.01
0.9 0.707| 0.874| 0.966| 0.894| 0.965| 19.95 | 0.910}{ 0.949] 19.64

Table 4: Power functions of fixed-sample-size sign tests and double-check
sign tests, The value p is the probability of having a positive
observation. Bl(°) and BZ (+) are for double-check Procedures

1 and 2, respectively, The significance level is o = 0.01l.
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Number @=102 | g=10"°
of stages -2 -4 -6 -6
(k) a=1-p=10 “ | @=1-p=10 | a=1-B=10 1-8=10 1-8=0. 1
) 1.323 1.417 1.417 1-19 1.631
(-730) (-716) (-709) (-658) (-838)
3 1.401 1.642 1.680 1.198 2.099
(-591) (.574) (-566) (-504) (-732)
D 4 1.386 1.748 1.847 1.143 2.442
&z (.504) (.486) (:477) (-414) (-655)
6 1.281 1.781 1.995 1.006 2.849
(.3%) (.378) (-369) (.310) (-551)
- 8 1.166 1.718 2.009 .886 3.023
%- (.331) (.314) (.305) (.251) (.481)
' 10 1.064 1.628 1.964 .789 3.072
{ (.287) (.270) (.262) (.212) (-430)

Table 5: Asymptotic efficiencies of k-stage test relative to the fixed-
sample-size test with various error probabilities o and 1-8.
The k-stage test has an equal number of samples in each stage

and the significance level at each stage is allk.







